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Abstract 

Power outages in the distribution grid profoundly 

impact everyday human activity and economic 

welfare, as numerous infrastructures rely on 

uninterrupted power for sustained operation. Over the 

past decade, there has been a significant focus on 

using machine learning (ML) to predict outage state 

of risk (SoR) in both research and applications. One 

of the main causes of outages is weather conditions 

causing equipment failure due to wear and tear, as 

well as lightning strikes, in this paper. Therefore, we 

analyzed the consequences of selecting various 

weather-related ML model features on the outage SoR. 

We first show the outage SoR prediction results with 

and without considering lightning features, and then 

rank the SoR prediction performance based on various 

other weather features. 
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1. Introduction  

Outages in distribution systems may disrupt the 

power flow to the consumer for an extended period, 

resulting in compromised quality of life and adverse 

economic impacts (Watson et al., 2022). Therefore, 

predicting outages is vital to implementing mitigation 

measures that can reduce these impacts. 

Outage SoR prediction models use various 

features, ranging from the characteristics of the power 

system constituents to environmental factors of the 

area where the system resides, to determine when and 

where the outage is most likely to occur (Baembitov & 

Kezunovic, 2023). The statistics show that on average 

the factors contributing to over 75% of outages in the 

USA are equipment wear and tear combined with 

weather and vegetation impacts (Electric Disturbance 

Events (OE-417) Annual Summaries, 2002). 

Significant work in the past has gone into determining 

the best features to be used for the ML models aimed 

at the outage SoR prediction (Omran & El Houby, 

2020; Watson et al., 2022; YANG, 2021). Previous 

studies have primarily focused on environmental 

weather causes, including lightning and vegetation. 

Numerous publications describe ML/AI 

applications for outage predictions, incorporating 

historical equipment failure alongside weather, 

vegetation, and soil data. The optimized output from 

Decision Trees, Gradient-Boosted Trees, Random 

Forest, Ensemble Regression, and Bayesian Additive 

Regression were used to predict outages due to storm 

events (Cerrai et al., 2019). Different regression 

models were applied to understand the impact of 

extreme weather on power infrastructure, enhancing 

outage predictions by selecting relevant features using 

random forests (Watson et al., 2022). Decision tree-

based machine learning algorithms were used to 

predict the outages caused by storm events after 

classifying them according to their severity (Yang et 

al., 2020). A multi-constrained outage model was 

simplified into two single-objective subproblems 

using collaborative neural networks for outage 

prediction while overcoming the limited data 

availability of weather events and outages (Onaolapo 

et al., 2023). However, these works have used weather 

parameters that are statistically aggregated over the 

entire period of the event and based their analysis on 

the number of affected customers rather than the 

outage SoR. Additionally, the parameters of lightning 

strikes were not accounted for.  

Among the various environmental factors, 

lightning strikes are recognized as a major cause of 

outages and blackouts in power systems (Haes 

Alhelou et al., 2019; Ren et al., 2021). Previous 

research includes outage rate model based on the 

number of lightning arresters, number of lightning 

strikes, and the line density in an area (Miyazaki & 

Okabe, 2010). Weighted logistic regression was used 

to map the number of thunderstorm events at a 

particular area under study to the number of outages 

that might occur based on the number of thunderstorm 

events (Doostan & Chowdhury, 2020). Comparison of 

weather parameters and lightning characteristics have 

not been included in these studies. A framework was 

developed for obtaining the probability of lightning-

induced failures considering the design criteria, asset 



condition, and atmospheric status at the time of 

lightning strikes but without considering the quantities 

defining the lightning events (Souto et al., 2023). A 

Bayesian network was trained to predict the outage 

risk for overhead railway contact lines using a 

spatiotemporal fragility model and a probabilistic 

lightning model that accounts for the inherent 

uncertainties of lightning (Wang et al., 2023). Outage 

prediction probability obtained from a General 

Regression Neural Network (GRNN) was compared 

with other variants of neural networks trained on the 

number of and distance to lightning strikes, average 

intensity, and peak current data from the utility (Xie et 

al., 2019). Although they use several parameters that 

define the lightning phenomena, the atmospheric 

parameters are ignored. Also, they don’t analyze the 

contribution of lightning features toward a better 

outage SoR prediction accuracy or their comparison 

with other weather features.  

Our contribution, elaborated in the next section, is 

a sensitivity study of the impacts of different lightning 

features on outage prediction outcomes, which may 

guide researchers when selecting their data, features, 

and algorithms in future work. 

The rest of the paper is organized as follows. 

Section 2 provides the problem definition and 

contribution. Section 3 discussed data preparation 

steps. Section 4 provides insights into the 

incorporation of lightning-based features and their 

importance. Section 5 draws conclusions. References 

are given at the end. 

2. Problem Definition and Contribution 

Outages in the power systems pose a threat to 

secure operation of the grid. The outages lead to both 

monetary and non-monetary detrimental effects on 

both: the customers and the utility performance 

(Schmidthaler & Reichl, 2016; Shuai et al., 2018). 

Operators of the grid would benefit from the ability to 

anticipate the outages in separate parts of the system, 

allowing them to prepare and mitigate the effects 

(Baembitov & Kezunovic, 2023; Khoshjahan et al., 

2023).  

A variety of spatial and temporal resolutions can 

be used in outage predictions. The current study takes 

6-hour horizons for the temporal resolution and 

clusters of approximate size 20 by 20 miles for the 

spatial resolution. The selection of optimal time 

windows and cluster size depends on who is using the 

predictions. Predictions can be used by utilities and 

customers. Utilities have several time horizons of 

interest depending on the mitigation action that can be 

taken. Operations are interested in shorter intervals of 

several hours, whereas asset management prefers 

intervals of days. On the customer side, even the 

shortest intervals of one-hour ahead predictions can be 

valuable as mitigation actions can be performed in a 

shorter time.  

Since the outages are mainly caused by the 

weather, it’s important to understand the components 

of severe weather that cause the outages. One such 

cause is lightning strikes. This paper focuses on the 

sensitivity analysis of predictive models to lightning 

data. As was shown in the previous section, the current 

literature falls short of analyzing this phenomenon.  

Therefore, our contribution lies in evaluating the 

effect of including lightning features as ML model 

inputs on the accuracy of outage SoR prediction. We 

train and test an ML model on data with and without 

features showing their effect on model performance. 

Additionally, we rank the input features in order of 

importance for the algorithm's performance when 

predicting outage SoR. This study focuses on SoR for 

outages due to severe weather rather than extreme and 

catastrophic events.  

3. Data Preparation 

3.1 Clustering feeders in GIS 

The first step of the approach is to split the service 
territory into several geographical sections for which 
the SoR predictions would be made.  

In an actual utility system used for this study, over 

281 thousand feeders were first matched to their 

substations of origin (86 unique substations). Next, 

substations with feeders were clustered into 7 non-

overlapping clusters. The segmentation was 

performed manually in ArcGIS to keep clusters 

comparable in size, not overlapping and compact. The 

area of the entire service territory is approximately 

100x100 miles. The number of clusters was selected 

empirically to accommodate the geographical 

characteristics of the terrain and relevant parts of the 

service territory. Due to data privacy concerns, we 

cannot present the full map of the service area. Instead, 

Fig. 1 shows relative cluster locations and their size 

acquired by using the Minimum Bounding Geometry 

tool in ArcGIS Pro set to a convex hull.  

The resulting 7 clusters become the prediction 

entities for the study. Outage SoR levels would 

correspond to the clusters’ locations. The clustering 

method depends on the application and can be 

performed in different ways. One might consider 

geographical locations, underlying terrestrial 

characteristics, surface elevation, operational districts 

of a utility and other characteristics that can be used to 

break down the service territory into several sections. 



Several ways to cluster a service territory are 

discussed in (Watson et al., 2020). This paper 

addresses the influence of considering additional data 

and does not explore the variations in the clustering 

methodology.  

 
Figure 1. Convex hull of per-cluster feeder 

locations 

3.2 Spatiotemporal correlation and 

preprocessing of outages 

Our study uses 5 years of historical outage data from 
January 2018 to December 2022 from a utility in Texas. 
The provided outage logs contained power interruption 
information down to a meter, so there have been over 9 
million rows in the original dataset. Information 
contained outage occurrence and restoration times, 
feeder ID, and cause codes. We cleaned and 
preprocessed the data, discarding the rows with missing 
data. The missing data was a relatively small part of the 
dataset, resulting in less than 1% rows discarded.  

To correlate outages, one needs to determine the 
spatial and temporal references. Spatially, the location 
of the 7 clusters was used as reference intervals. In the 
temporal dimension, we created evenly spaced 
timestamps (6-hour) and used the intervals in between 
as reference intervals. The correlation process matches 
an outage to a specific location in space and a specific 
temporal bin. It can be thought of as putting an outage 
to a spatiotemporal cube.  

A single spatiotemporal cube would contain several 
outage occurrences with different durations and causes. 
To aggregate them into a single row, we averaged the 
durations of outages and registered each of the cause 
codes in a separate column. In such manner the cube is 
described by average outage duration and a set of cause 
codes. Since the focus of this study is on lighting caused 
outages, we have only selected the outages that had 
“thunderstorms” and “lightning” as causes discarding 
the rest. After aggregation, there was a total of 3589 

examples with outages out of 51128 total examples, 
which constitutes around 7%.  

3.3 Weather data preprocessing 

To exclude the noise from weather forecasts on the 
analysis of feature importance, we use the actual 
weather during the outages.  

The ASOS dataset (Automated Surface Observing 
Systems, 2016) serves as a basis for weather feature 
extraction. We used only the following numerical data: 
pressure, dew point temperature, wind gust speed, 
precipitation levels, relative humidity, wind speed and 
direction, and temperature.  

Weather was correlated to clusters in each of the 6-
hour intervals. We used minimum, maximum, and 
mean functions to describe a weather parameter within 
a temporal window. Then, to correlate weather to 
clusters, we selected the closest weather stations to 
clusters and calculated the mean of temporal means, 
minimum of temporal minimums, and maximum of 
temporal maximums. The procedure is described in 
detail at (Baembitov et al., 2024). These statistics are 
often used in modeling spatiotemporal data (Elnekave 
et al., 2007; Li et al., 2010). The outcome of this step is 
the correlated weather parameters to cluster locations in 
each of the temporal periods. The total number of 
weather features is 168: for each of the 8 parameters 
(temperature, pressure, etc.), we calculate 3 statistics 
(min, max, mean) for each of the 7 clusters.  

3.4 Lighting data preprocessing and feature 

extraction 

To describe the lighting activity in the area we 
utilized a dataset from Vaisala National Lightning 
Detection Network (Vaisala, 2021). The dataset 
contained information about lightning strikes in the area 
of interest in the same time period as outages from a 
utility dataset. Lightning dataset contained date, time, 
latitude, longitude, peak current, rise time and cloud-to-
ground or cloud-to-cloud distinction columns. The data 
was separated into cloud-to-cloud and cloud-to-ground 
strikes and then imported into geodatabase.  

The outage can happen due to either a direct hit of 
lightning or due to induced voltage of an indirect hit. 
There are several characteristics that affect the 
probability of an outage from lightning strike: distance 
from a lightning strike to power lines, current 
magnitude and waveform, the configuration of a power 
line, and soil resistivity (Lazzaretti et al., 2015; 
Ravaglio et al., 2019). The induced voltage is 
proportional to the current derivative over time and 
inversely proportional to the distance. From the 
available data, we are able to calculate the 



approximation of a current derivative as the peak 
current divided by the rise time.  

The distance is accounted for by creating 50-meter 
bands around cluster locations. That allows 
differentiation of lightning strikes by distance to 
feeders. We have created 8 bands in 50 meters 
increments around the clusters: 0 to 50 meters, 50 to 100 
meters etc. and a band (0 to 400 meters) that encloses 
all of the other bands, to have a summation of the 
features within one cluster. Fig 2 illustrates the bands. 
The maximum band of 400m was selected based  on the 
median accuracy of strike locations in the data, the 50m 
interval is selected to account for different distances 
from strikes to feeders.  

 
Figure 2. Bands around feeders 

To create features that reflect lighting activity and 
its intensity, we aggregated the strikes into 6 hour 
windows throughout the period of the experiment. The 
time windows coincide with the time windows for 
outages and weather parameters. All strikes that 
occurred within the time window are then separated into 
respective 50m bands. Within each band the summary 
statistics of the strikes are calculated: the number of 
strikes, sum of the peak currents, maximum of the peak 
currents, sum of the current derivatives, and maximum 
of the current derivatives. For example, to calculate the 
maximum of the peak current for a given cluster in the 
150m-200m band, we first select all the strikes that 
occurred between 150m and 200m from the feeder 
locations. Then from that selection, the value of a 
maximum current is used as a feature for a given 6h 
window.  

In such a manner each time window for each of the 
clusters is characterized by 5 statistics for each band. 
For 2 types of strikes (cloud-to-cloud and cloud-to-
ground) 5 statistics (number of strikes, sum of peak 
current etc.) are derived for each of the 9 bands (0m-
50m, 50m-100m etc.) in each of the 7 clusters, resulting 

in 630 total lightning features. The features are then 
exported from geodatabase and saved as .csv files for 
use in the next steps.  

For this experiment, we use actual lighting strikes 
during outages. As far as we know, the predictions of 
lightning strike locations, currents, and rise times are 
not available in the public domain at the moment, but 
the situation might change. Our goal is to determine 
whether lightning data of such nature can be used to 
improve the accuracy of outage SoR predictions. We 
hope that our study will serve as a guidance to other 
researchers.  

3.5 Combination of processed datasets 

Once all datasets have been processed, we combine 
them. Since each dataset uses the same temporal and 
spatial reference points, the combination is performed 
by joining datasets along the temporal and spatial axes. 
Our previous works show that 2 years of data is the 
minimum for training the SoR prediction algorithm 
(Baembitov et al., 2024). For this reason, 5 years of 
available data are split into 3 years of training and 2 
years of testing. The split is temporal to ensure no data 
leakage. The effects of adding new features are 
evaluated on a test dataset unseen during training, as 
described in the next section. 

4. ML Algorithm and Feature Importance 

Once the outage, weather, and lightning data were 
extracted, preprocessed, and consolidated, the obtained 
training data was used to train different models. Our 
paper is focused on understanding the effects of adding 
new features. Therefore, we compare the performance 
with and without new lighting features and only then 
analyze features importance.  

Based on the input features, three different ML 
models were fit to predict the SoR of outages: Random 
Forest (RF), Logistic Regression (LR), and Neural 
Network (NN). We selected the algorithms of different 
types (LR – linear algorithm, RF – tree-based non-linear 
algorithm, NN – non-linear algorithm) to be able to 
utilize different methods for feature importance. A 
previous study suggests that algorithms have similar 
performance on the task of predicting outages 
(Baembitov et al., 2024). Therefore, the comparison 
between the algorithms’ performance falls outside the 
scope of this paper.   

Two metrics used to evaluate the models on the test 
dataset are the F1 score and the Area Under the 
Receiver Operating Characteristics Curve (AUC-ROC) 
(Baembitov et al., 2024). After training the models on 
the input data, the importance of the various features for 
predicting the outages at any given location was 
calculated using various methods. Additionally, the 



effect of lightning data on these three models was 
observed.  

4.1. Effect of lighting features  

To determine the effect of lighting features on the 
algorithm performance, we repeated the experiment 
with and without lighting features. The values of each 
metric were determined for the cases with and without 
lightning features included in the training and testing 
data, and the difference in performance was observed. 
Weather data itself is helpful to predict outages. In this 
study, we focus on understanding the change in 
performance metrics when adding lightning features 
(Baembitov & Kezunovic, 2023). Each of the seven 
clusters was individually studied. The results are 
presented in Tables I and .  

Table I. Average F1 score and ROC-AUC for all 
models with and without lightning features 

Model Lightning 
Features 

F1 ROC_AUC 

LR 

absent 

0.32 0.74 

RF 0.38 0.8 

NN 0.34 0.73 

LR 

present 

0.32 0.72 

RF 0.45 0.81 

NN 0.41 0.73 

 

Table II. F1 score and ROC-AUC for RF per 
cluster. 

Cluster Lightning 
Features 

F1 ROC_AUC 

0 

absent 

0.44 0.83 

1 0.42 0.81 

2 0.39 0.79 

3 0.3 0.82 

4 0.27 0.77 

5 0.37 0.82 

6 0.46 0.81 

0 

present 

0.47 0.83 

1 0.5 0.81 

2 0.44 0.78 

3 0.41 0.81 

4 0.37 0.79 

5 0.48 0.84 

6 0.49 0.81 

 

Despite the low absolute values of the metrics, one 
can see a positive change due to addition of new 
features. To have a better representation of the results, 
we have calculated the difference between metrics for 
the cases with and without lighting data. Then we 
averaged the obtained differences across clusters. In 
such manner mean difference in each metric was 
obtained to demonstrate the change of performance of 
the models. The results are shown in Fig. 3.  

 
Figure 3. Mean difference in performance with 

and without lightning  

From Fig. 3, it can be observed that the mean value 
of all the performance metrics over all the clusters 
improves in the case of Random Forest. All the metrics 
except for ROC-AUC improve when neural networks 
are used to predict the outages in the system. However, 
in the case of Logistic Regression, only the Recall 
scores improve with the inclusion of Lightning data. 
The average performance of the remaining metrics over 
the clusters decreases with the inclusion of lightning 
information for LR. We should note that the 
performance of LR on the given task is inferior to NN 
and RF. The linear model could not separate outages 
from normal operations, based on the given features. 
We also note that linear models perform poorly on 
highly correlated features. That is the case for lighting 
features, as all of them (current, derivative, count) 
appear all together when lightning strikes are present.  

4.2 Determining feature importance 

There are several methods used for calculating the 
feature importance. Most known are: feature 
importance based on the linear model’s coefficients, 
impurity-based feature importance for tree-based 
models, and permutation-based importance that can be 
used for all types of models (König et al., 2021; 
Rajbahadur et al., 2022).  

Since we have almost 800 features for each of the 
models, we grouped the lightning features by type: A – 
point count, B – max current, C – max derivative, D – 
sum of current, E – sum of derivative, F – altitude, G – 
wind direction, H – dewpoint, I – wind gust, J – 
atmospheric pressure, K – relative humidity, L – wind 
speed, M – temperature. We then added the importance 
coefficients for each of the feature types obtained from 
the specific cluster. Then, we present them as figures. 



Through such an approach we can observe the relative 
feature importance of each type acquired from separate 
clusters.  

The method we used to determine the feature 
importance for RF is Impurity-based analysis. The 
method is built in the class of Random Forest in the 
sklearn library (Breiman, 2001; 
RandomForestClassifier, 2024). This method helps us 
determine whether the feature enables the model to 
predict the output. It is performed on the training data, 
when the random forest is being trained, providing a 

benefit of fast estimation of the feature importances. A 
limitation is that in an overfitted model, the output of 
the impurity-based importance analysis is not as 
reliable. The importance of a feature is determined by 
counting the number of times it was used to split the 
nodes and reduce impurity after a tree is constructed. 
However, it favors features with more categories. In the 
absence of a correlation between the input features, the 
impurity measure can be used to identify the 
contribution of each feature (Scornet, 2023). The 
impurity-based feature importance for all target clusters 
using all available features is shown in Fig. 4 – Fig. 10.  

 

 
Figure 4. RF cluster 0 importance 

.  
Figure 5. RF cluster 1 importance 

 
Figure 6. RF cluster 2 importance 



 
Figure 7. RF cluster 3 importance 

 
Figure 8. RF cluster 4 importance 

 
Figure 9. RF cluster 5 importance 

 
Figure 10. RF cluster 6 importance 

From the figures above for RF, we can observe two 
different phenomena. First, we can see that the 
importance of the lighting features (A-E) is much higher 
than that of the weather parameters (F-M) as determined 
by the height of the bars on all of the Figures. Besides, 
it is visible that the lightning features of the same cluster 

for which the model is developed are more important in 
most cases (except for cluster 0, which also provides 
significant importance to features from other clusters, 
see Fig. 4). RF tends to distinguish and prioritize the 
features related to the target cluster and assign less 
importance to features coming from neighboring 



clusters. That is consistent for both weather and 
lightning features.  

For calculating the importance of the logistic 
regression model, the process is straightforward when 
the classification is binary - we only have a set of 
coefficients. However, in the case of multiclass 
classification, separate coefficients exist for each 
unique class. We calculate the feature importance for 
the multiclass logistic regression model by taking an 
average of coefficients across all the classes for each of 
the input features to the model. This technique results in 
an inaccurate estimation of feature importance when the 
features are highly correlated (Filho, 2024). In our case, 
we predict the outages for each cluster using the 
available features, and there are only two possible 
outcomes: either an outage occurs or it doesn’t.  

The feature importance obtained from the LR model 
for each cluster according to the model coefficients is 
very similar to the RF results and is presented in online 
appendix, available at (Appendix, 2024). 

Based on the results for LR, we confirm that the 
coefficients for lightning-related features (A-E) are 
higher than the weather-related features (F-M). 
However, the importance of source clusters does not 
always correlate with target clusters as it does in case of 
RF, which can be explained by an overall worse 
performance of LR.  

The third method that we considered for this study 
is permutation-based analysis. The permutation-based 
feature importance extraction method is independent of 
the model (Breiman, 2001; Mi et al., 2021). This 
method randomly shuffles an input feature to observe 
the model's performance change. A greater drop in 
performance after shuffling indicates greater 
importance of the feature for prediction purposes. Using 
the test data, a trained model is used for calculating the 
importance based on this method. The randomization 
effectively nullifies the effects of the variable as if the 
coefficients of a linear model were set to zero; however, 
it is not the same as removing the variable to create a 
new model (Hastie et al., 2009). Using error ratio rather 
than error difference for evaluation might be a good idea 
because the feature importance problems are 
comparable across different problems. The 
permutation-based method doesn’t require us to retrain 
the model and gives the feature importance evaluation 
over consistent models. However, if the features are 
correlated, it can cause biased importance estimation 
(Molnar et al., 2020). The results obtained by the 
permutation-based method were inconclusive and thus 
were omitted from this study.  

4.3. Discussion 

The presented results demonstrate that the addition 
of lightning strikes data to the rest of the weather data 
positively affects the models’ performance. The 
sensitivity study of the feature importance analysis 
reveals that lightning data plays a critical role in outage 
predictions. The sensitivity study also reveals that the 
lightning features of the target cluster itself are most 
valuable for the models. That may indicate the presence 
of relatively localized areas of lightning activity, which 
can be captured by the lightning detection network. 
However, the challenge of producing highly accurate 
locations of lightning strikes remains to be resolved.  

Different methods for determining feature 
importance have relevant strengths and weaknesses. 
The usage of LR coefficients is straightforward and 
intuitive, providing an opportunity to explain how 
model operates to the stakeholders. However, LR is a 
linear algorithm. RF addresses that issue, as it is non-
linear. It is also computationally effective as the 
importance is derived from the training process. 
However, such a method can only be used for decision 
trees-based algorithms. A more general method of 
permutation can be applied to any model. But it is more 
computationally intensive and as is the case in our 
study, may produce inconclusive results.  

If one wants to address the inconclusive results of 
permutation-based analysis, one way would be to 
reduce the number of features either by sampling a 
smaller number of bands and/or reducing the number of 
calculated parameters. This topic is left for future 
research.  

Future research steps would be to identify the 
parameters within available weather forecast models 
that can replace the actual lightning strikes. The 
performance improvement of such an approach might 
be lower than using actual data, but, nevertheless, 
should not be ignored.  

In summary, the study demonstrates the importance 
of lightning features for outage SoR estimation. It 
provides a strong foundation for the conclusions that 
follow. 

5. Conclusions 

In this study, we analyzed the effect of the inclusion 
of lightning-based features on the performance of the 
SoR prediction algorithms. We then analyzed the 
feature importance for the models. Based on the results, 
we can draw the following conclusions. 

1. Incorporation of lightning-based features 
positively affects the performance of models 
for predicting outage SoRs that are caused by 
thunderstorms in the area.  



2. The lightning-based features have a bigger 
weight when targeting lightning-caused 
outages as compared to weather conditions 
available through ASOS network.  

3. There is not a single pronounced feature within 
lightning-based features that is more important 
than the others. Thus, a selection of the features 
should be based on their availability.  

4. Since the current state-of-the-art does not have 
a way of predicting accurate lightning strike 
locations and its parameters, a proxy features 
should be used instead. Weather forecast 
models capable of predicting cloud formation 
and thunderstorms activity would be the first 
candidates.  
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